
IoT Monitoring and Control System for Plant
Irrigation

1st Hian de Almeida Santiago
IT department

Federal University of Paraiba
João Pessoa, Brazil

hianalmeidasantiago@gmail.com

2nd Georgia Pereira Brito
IT department

Federal University of Paraiba
João Pessoa, Brazil

georgiapereirab@gmail.com

3rd José Venancio de Oliveira Silva
IT department

Federal University of Paraiba
João Pessoa, Brazil

josevenancioliveira@gmail.com

4th Mirele da Silva Costa
IT department

Federal University of Paraiba
João Pessoa, Brazil

mirelecosta@eng.ci.ufpb.br

5th Raissa da Silva Vieira
IT department

Federal University of Paraiba
João Pessoa, Brazil

raissavieira@eng.ci.ufpb.br

6th Veronica Maria Lima Silva
Department of Computer Systems (DSC)

Federal University of Paraiba
João Pessoa, Brazil

veronica.lima@ci.ufpb.br

Abstract—This article describes an automatic irrigation system
that allows the user to monitor several parameters related to
the care of a plant, including humidity level, temperature and
environmental lighting data. These ambient levels are measured
using sensors. An irrigation system controls soil moisture and
can be triggered automatically when a significant drop in these
values is detected. Furthermore, the system includes the option
to manually activate the irrigation or fertilizer dispenser if
requested by the user, in addition to emitting ultraviolet radiation
if the plant is not receiving enough natural light. The IoT system
stores this information and can be controlled from anywhere. All
of this aims to ensure a favorable environment to plant growth
and ease for those who use it. Through a series of tests, the
system to be consistent and easy to use, both independently and
manually activated.

Index Terms—IoT, Esp32, Firebase, Smart, Garden

I. INTRODUCTION

In the busy daily lives of contemporary societies, con-
nectivity and automation play increasingly essential roles,
transforming not only humans, but also the way we interact
with the environment. In this context, the relevance of projects
that explore the integration of embedded systems in domestic
environments stands out, especially in plant care. The balance
between the practicality of automation and environmental
responsibility becomes crucial as we seek innovative solutions
to optimize cultivation in residential spaces.

In this work, an embedded monitoring and care system
was developed for plants to grow in a domestic environment.
The system proposes an integrated solution for automatic
supervision and monitoring of various settings related to plant
care, such as soil humidity, temperature and environmental
lighting. The system also provides additional functionalities,
such as manual watering control, fertilizer dosing and ultra-
violet radiation emission, if necessary. The developed system
contains a web platform, which user interface was built using
the React [1] library developed in JavaScript. The Firebase [2]
platform was used to store and synchronize data. Furthermore,

the physical components of the project were initially tested
using the Tinkercad [3] modeling tool before developing a
final prototype with the ESP32 board.

II. RELATED WORK

Table I presents a comparative analysis of related work on
smart gardens projects, highlighting smart irrigation systems
that include sensor networks and automation in the plant
irrigation process, among other components.

Choudhari et al. [4] presents a smart gardening system based
on the Internet of Things (IoT), employing several sensors to
monitor soil moisture, air temperature, lighting conditions and
air humidity. The system incorporates a fertilizer dispenser
controllable remotely via a mobile app or web panel. The
irrigation system consists of a relay connected to the mi-
crocontroller, water pump, water source and separate power
supply. The fertilizer doser is controlled by a servo motor,
also connected to the microcontroller.

Song et al. [5] proposes a system to automatically mon-
itor the conditions of the plant’s environment. Using the
NodeMCU open source platform, it incorporates a relay mod-
ule to control high-current appliances, an air quality sensor
sensitive to various gases and smoke, a soil moisture sensor to
trigger irrigation based on a reading of the water and a DHT11
sensor to adjust environmental conditions. around the plant.
The project seeks to explore automation in gardening, offering
an integrated and efficient solution for monitoring and caring
for residential plants, but does not cover fertilizer dispensers.

Singh et al. [6] also explores soil moisture and solar
intensity monitoring but does not have automatic irrigation
solutions that rely on the user to carry out actions, and for
this it uses alerts via SMS through the Twilio service.

Pereira et al. [7] addresses the evolution of agriculture with
the integration of the Internet of Things (IoT). This article
presents an IoT-enabled smart drip irrigation system using
ESP32 microcontroller. The proposed system connects to the



TABLE I
RELATED WORK

Smart Garden Items Specifications
IoT-based Smart 1 - Air humidity sensor

Gardening System [4] 2 - Soil moisture sensor
3 - Brightness sensor
4 - Web application

5 - Mobile application
6 - Water dispenser pump

7 - Servo motor for fertilizer
dispenser

A Study on IoT based Real-Time 1 - Soil moisture sensor
Plants Growth Monitoring 2 - Servo motor

for Smart Garden [5] 3 - LED
4 - Gas sensor

5 - Water dispenser pump
Smart Garden 1 - Soil moisture sensor

with IoT based Plant 2 - Remote data analysis
Monitoring System [6]

ioT-Enabled Smart 1 - Soil moisture sensor
Drip Irrigation System 2 - Remote data analysis

Using ESP32 [7] 3 - ESP32
4 - Temperature Sensor
5 - Air Humidity Sensor
6 - Water Flow Sensor

7 - Solenoid Valve
Iot and Artificial 1 - Rain sensor

Intelligence Based Smart 2 - Temperature and
Gardening and Irrigation System [8] humidity sensor (DHT11)

3 - Soil moisture sensor (V1.2)
Proposed system 1 - Air humidity and

temperature sensor
2 - Soil moisture sensor

3 - Brightness sensor
4 - Web application

5 - Water dispenser with
peristaltic pump

6 - Servo motor for
fertilizer dispenser

7 - Reservoir water level
monitoring

Blynk application, allowing the collection of irrigation data,
manual irrigation control and visualization of graphs based
on soil moisture, temperature, air humidity and water flow
sensors. The ESP32 activates irrigation when necessary, en-
suring an adequate supply of water to the plants. Additionally,
the system alerts the user to extreme humidity conditions and
offers the option to turn off automatic watering as desired.

Samira et al. [8] involves building a smart irrigation sys-
tem using multiple hardware components like NodeMCU
ESP8266, a hydraulic motor, battery, relay module, rain sensor,
and multiple soil moisture sensors. An Android application and
a NodeMCU framework control the system. Key goals include
remote monitoring, streamlining gardening tasks, time-saving
irrigation methods, frequent system updates for accuracy, and
expansion to IoT, microcontrollers, AI, and other technologies
for enhanced functionality. The system aims for efficient irri-
gation, minimizing water loss and improving the effectiveness
of smart gardening.

The main focus of our system is to create a favorable
environment for the plant and display the detailed sensors
and actuators in a simple and user-friendly way. The web
application provides information on the current state of the

plant and options to activate the watering and fertilizing
directly. As for the actuators and system architecture, we
offer as many simple-to-find and inexpensive components as
possible, delivering most of the functionality of the related
article while being relatively simple and easy to replicate.

III. METHODOLOGY

This study was developed in distinct stages, aiming to
achieve the proposed objectives of development and integra-
tion of the automatic irrigation system. In Fig. 1, we represent
an information flow diagram in the architecture of our system,
in order to represent how readings are taken in the plant and
how the actuators act on it. The numbers in the image show
how the data flow and the system behaves, as follows:

1) Data Collection: The sensors read the data from the plant
and water reservoir.

2) Data Processing: The ESP32 processes the data into a
JSON string.

3) Data Upload: The ESP32 sends the JSON string to the
Firebase instance.

4) Data Visualization: When a new document is added to
the database, the Web Application updates the graphs
and real-time readings, and sends updates the data on the
database if any of the actuators are manually activated.

5) Actuation Decision: The ESP32 checks if any of the ac-
tuator flags are set, and sends the signal to the respective
actuators.

6) Actuation: Each actuator that had its flag set on the
database goes through a code routine based on its
functionality.

Fig. 1. System architecture

The flow of activities developed is explained in Fig. 2
with a diagram of all the steps from prototyping to the final
integration of the Web platform with the hardware. Initially,
a prototype of the irrigation system was developed using the
Tinkercad online simulation platform. This step allowed the
visualization and preliminary validation of the integration of



sensors and some actuators, serving as a testing stage for the
following implementations.

Fig. 2. System implementation flow diagram

The next step involves implementing the system’s physical
components on a breadboard and making appropriate connec-
tions using jumper wires. The components used were: ESP-
WROOM-32, Micro Servo 9g SG90, Mini Water Pump 12V
DC Motor - RS-385, Reed Switch Water Level Sensor, UV
LED, 12v power supply, XL6009 Step Up Voltage Regulator
Module, L298N Double H Bridge, DHT22 sensor and GC-58
Soil Moisture Sensor.

The communication protocol between the ESP32 and the
Micro Servo, L298N Double H Bridge and LED components
is PWM [9] (Pulse Width Modulation) which can send a
specific value to the components based on its duty cycle. The
DHT22 and GC-58 components use 1-Wire Serial Bus [10] as
a protocol, which uses only one communication wire between
a device and a peripheral.

Subsequently, we connected the ESP32 board to a local
Access Point, and ran a few tests on how to upload the sensor
data to a Firebase instance. This step was essential to enable
communication between the system and the internet.

The web application was developed using the React library.
This stage included creating a user-friendly interface for
users to monitor and control the irrigation system remotely.
The application allowed for visualizing sensor data, manually
activating irrigation, fertilizer dispenser, and the LEDs.

The database used was Firebase’s Real Time Database. It is
a NoSQL cloud database that stores data in JSON format. The
data was divided into two blocks, the first named ”readings”,
as can be seen in Fig. 3, is responsible for storing the sensor
readings. The second block of information, represented in Fig.
4, in the block named ”leituras”, records the actuator activation
data.

The connectivity of the ESP32 with the database was done
through the FirebaseESPClient library. The microcontroller
sends the readings obtained by the sensors to the ”readings”
data set, and reads from the ”leituras” data set to check if any
of the actuators must be triggered, calling the actuator routine.

The Web Application is integrated to database through
HTTPS calls to the Firebase API. Data from sensor readings
are used to create monitoring graphs and tables. When the user
activates some of the buttons to activate the actuator functions,
a call is made to the bank to save the value 1 in ”leituras”,
which will be interpreted and executed by the ESP32.

Fig. 3. JSON structure of the database with sensor reading data

Fig. 4. Database JSON structure with actuator activation data

IV. RESULTS

The final implemented system is represented in Fig. 5 in
which it is possible to see the sensor connections on the
NodeMCU microcontroller with the help of the breadboard.
Fig. 6 shows a usage view with a real plant.

In Fig. 7 the first screen of the application is shown,
most prominently in the ”Minha Planta” section it is possible
to see the last reading made by the sensors with data on
temperature, ambient light level and humidity of the soil and
air. In the ”Cuidados Essenciais” section we have three buttons
that trigger physical system functionalities, namely watering,
fertilizing and turning on the UV light. An alert modal is
displayed for the user informing the critical level of the water
reservoir, the screen stops displaying this modal when the
reservoir is full again.

The second screen of the web application is used to present
sensor reading metrics. In Fig. 8 we have a graph that shows
the temperature and humidity of the environment over time.
In Fig. 9, a table is presented with records of soil moisture
and ambient light level.

Tests of the smart gardening system were carried out at
different times of the day to evaluate the variation in light and
its influence on the system’s automatic actions.

Additionally, we used different soil samples with varying
humidity, from dry soil to completely wet soil, to test the sys-
tem’s ability to detect and respond to specific soil conditions
by activating irrigation or not.

Readings were taken at 30-minute time intervals, with the
aim of testing data saving and correct representation on the
platform.



Fig. 5. Prototype hardware, view of connections on ESP32

Fig. 6. Prototype hardware being used in a plant

Fig. 7. First screen of the web application with buttons for actuators and
visualization of the last reading taken by the sensors

Fig. 8. Second screen with graph showing the reading of air temperature and
humidity sensors

Fig. 9. Second screen with table with readings of soil moisture and ambient
brightness sensors

CONCLUSION

In this work, we successfully developed and implemented an
environmental monitoring and control system for plants grown
in a domestic environment, using ESP32 and a variety of
physical components. The adopted approach, which includes
the use of simulation tools, hardware and software integration,
as well as connection to a cloud platform, proved to be
effective in creating a functional and scalable system.

The combination of technologies used made not only the
monitoring of environmental variables such as temperature,
soil and air humidity, light, and water level possible, but also
the automation of processes such as plant fertilization and
irrigation.

Furthermore, the integration with a React web application
and Firebase real-time database provided an enhanced user
experience, enabling remote access and control of the system
through any internet-connected device.

For future work there is a need to better adapt the care
conditions for the type of plant that will be used and also
add more monitoring tools, such as the history of actions
such as watering and fertilization or how long the UV light
was activated. It would also be beneficial to add a way to
intelligently identify possible plagues or diseases on the plant
and provide care tips on the web platform.

REFERENCES

[1] React https://react.dev
[2] Firebase https://firebase.google.com
[3] Tinkercad https://www.tinkercad.com
[4] CHOUDHARI, Gauri R. IoT-based Smart Gardening System. Journal

Of Physics: Conference Series. Maharashtra, p. 1-8. jan. 2023.
[5] SONG; MI-HWA. A Study on IoT based Real-Time Plants Growth Mon-

itoring for Smart Garden. International Journal Of Internet, Broadcasting
And Communication. Jechon, p. 130-136. fev. 2020.

[6] SINGH, S. P.. Smart Garden with IoT based Plant Monitoring System.
Solid State Technology. India, p. 1-8. jan. 2020.

[7] Pereira, G.P.; Chaari, M.Z.; Daroge, F. IoT-Enabled Smart Drip Irrigation
System Using ESP32. IoT 2023, 4, 221-243.

[8] TUMPA, Samira Akter et al. Iot and artificial intelligence based smart
gardening and irrigation system. International Research Journal of
Modernization in Engineering Technology and Science, 2023.

[9] Pulse Width Modulation https://learn.sparkfun.com/tutorials/pulse-wid
th-modulation/all

[10] 1-Wire Protocol https://docs.arduino.cc/learn/communication/one-wire

https://react.dev
https://firebase.google.com
https://www.tinkercad.com
https://learn.sparkfun.com/tutorials/pulse-width-modulation/all
https://learn.sparkfun.com/tutorials/pulse-width-modulation/all
https://docs.arduino.cc/learn/communication/one-wire

	Introduction
	Related work
	Methodology
	Results
	References

